Abstract
AbstractThe present paper investigates the projective bundles over small covers. We first give a necessary and sufficient condition for the projectivization of a real vector bundle over a small cover to be a small cover. Then associated with moment-angle manifolds, we further study the structure of such a projectivization as a small cover by introducing a new characteristic function on simple convex polytopes. As an application, we characterize the real projective bundles over 2-dimensional small covers by interpreting the fiber sum operation to some combinatorial operation. We next determine when the projectivization of Whitney sum of the tautological line bundle and the tangent bundle over real projective space is diffeomorphic to the product of two real projective spaces. This answers an open question regarding the topology of the fiber of the Monster-Semple tower.
Subject
Applied Mathematics,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献