Affiliation:
1. Dipartimento di Matematica , Università di Genova , Via Dodecaneso 35, 16146 Genova , Italy
Abstract
Abstract
We prove a central limit theorem for
log
|
ζ
(
1
2
+
i
t
)
|
{\log\lvert\zeta(\frac{1}{2}+it)\rvert}
with respect to the measure
|
ζ
(
m
)
(
1
2
+
i
t
)
|
2
k
d
t
{\lvert\zeta^{(m)}(\frac{1}{2}+it)\rvert^{2k}\,dt}
(
k
,
m
∈
ℕ
{k,m\in\mathbb{N}}
), assuming RH and the asymptotic formula for twisted and shifted integral moments of zeta. Under the same hypotheses, we also study a shifted case, looking at the measure
|
ζ
(
1
2
+
i
t
+
i
α
)
|
2
k
d
t
{\lvert\zeta(\frac{1}{2}+it+i\alpha)\rvert^{2k}\,dt}
, with
α
∈
(
-
1
,
1
)
{\alpha\in(-1,1)}
. Finally, we prove unconditionally the analogue result in the random matrix theory context.
Subject
Applied Mathematics,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献