An Erdős–Ko–Rado result for sets of pairwise non-opposite lines in finite classical polar spaces

Author:

Metsch Klaus1

Affiliation:

1. Mathematisches Institut, Justus-Liebig-Universität, Arndtstraße 2, 35392Gießen, Germany

Abstract

AbstractIn this paper, we call a set of lines of a finite classical polar space an Erdős–Ko–Rado set of lines if no two lines of the polar space are opposite, which means that for any two lines l and h in such a set there exists a point on l that is collinear with all points of h. We classify all largest such sets provided the order of the underlying field of the polar space is not too small compared to the rank of the polar space. The motivation for studying these sets comes from [7], where a general Erdős–Ko–Rado problem was formulated for finite buildings. The presented result provides one solution in finite classical polar spaces.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference24 articles.

1. Classification of subsets with minimal width and dual width in Grassmann, bilinear forms and dual polar graphs;J. Combin. Theory Ser. A,2006

2. An EKR theorem for finite buildings of type Dℓ{D}_{\ell};J. Combin. Theory Ser. A,2018

3. An Erdős–Ko–Rado theorem for finite classical polar spaces;J. Algebraic Combin.,2016

4. A note on Erdős–Ko–Rado sets of generators in Hermitian polar spaces;Adv. Math. Commun.,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The unique coclique extension property for apartments of buildings;Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial;2023-09-13

2. An algebraic approach to Erdős-Ko-Rado sets of flags in spherical buildings;Journal of Combinatorial Theory, Series A;2022-11

3. An Erdős–Ko–Rado theorem for finite buildings of type F4;Israel Journal of Mathematics;2019-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3