Affiliation:
1. Department of Mathematical Sciences , 124268 Indian Institute of Science Education and Research (IISER) Mohali , Sector 81, SAS Nagar, P O Manauli , Punjab 140306 , India
Abstract
Abstract
Relative Rota–Baxter groups are generalizations of Rota–Baxter groups and have been introduced recently in the context of Lie groups. In this paper, we explore connections of relative Rota–Baxter groups with skew left braces, which are well known to give bijective non-degenerate set-theoretical solutions of the Yang–Baxter equation. We prove that every relative Rota–Baxter group gives rise to a skew left brace, and conversely, every skew left brace arises from a relative Rota–Baxter group. It turns out that there is an isomorphism between the two categories under some mild restrictions. We propose an efficient GAP algorithm, which would enable the computation of relative Rota–Baxter operators on finite groups. In the end, we introduce the notion of isoclinism of relative Rota–Baxter groups and prove that an isoclinism of these objects induces an isoclinism of corresponding skew left braces.
Funder
Science and Engineering Research Board
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献