Simple 𝔰𝔩 d+1-modules from Witt algebra modules

Author:

Guo Xiangqian1,Liu Xuewen2,Zhang Fenghua3

Affiliation:

1. School of Mathematics and Information Science , Guangzhou University , Guangzhou 510006 , P. R. China

2. School of Public Health , Tianjin Medical University , Tianjin , P. R. China

3. School of Mathematics and Statistics , Zhengzhou University , Zhengzhou , P. R. China

Abstract

Abstract Let d 1 {d\geq 1} be an integer and let 𝒲 d {\mathcal{W}_{d}} be the Witt algebra. For any admissible 𝒲 d {\mathcal{W}_{d}} -module P and any 𝔤 𝔩 d {\mathfrak{gl}_{d}} -module V, one can form a 𝒲 d {\mathcal{W}_{d}} -module ( P , V ) {\mathcal{F}(P,V)} , which as a vector space is P V {P\otimes V} . Since 𝒲 d {\mathcal{W}_{d}} has a natural subalgebra isomorphic to 𝔰 𝔩 d + 1 {\mathfrak{sl}_{d+1}} , we can view ( P , V ) {\mathcal{F}(P,V)} as an 𝔰 𝔩 d + 1 {\mathfrak{sl}_{d+1}} -module. Taking P = Ω ( 𝝀 ) {P=\Omega(\boldsymbol{\lambda})} , the rank-1 U ( 𝔥 ) {U(\mathfrak{h})} -free 𝒲 d {\mathcal{W}_{d}} -module, and V = V ( 𝐚 , b ) {V=V({\mathbf{a}},b)} , the simple cuspidal module over 𝔤 𝔩 d {\mathfrak{gl}_{d}} , we get the special 𝔰 𝔩 d + 1 {\mathfrak{sl}_{d+1}} -modules ( 𝝀 ; 𝐚 , b ) = ( Ω ( 𝝀 ) , V ( 𝐚 , b ) ) \mathcal{F}(\boldsymbol{\lambda};{\mathbf{a}},b)=\mathcal{F}(\Omega(% \boldsymbol{\lambda}),V({\mathbf{a}},b)) which are U ( 𝔥 ) {U(\mathfrak{h})} -free modules of infinite rank. We determine the necessary and sufficient condition for the 𝔰 𝔩 d + 1 {\mathfrak{sl}_{d+1}} -module ( 𝝀 ; 𝐚 , b ) {\mathcal{F}(\boldsymbol{\lambda};{\mathbf{a}},b)} to be simple, and for the non-simple case we construct their proper submodules explicitly. At last, using the above results, we deduce an explicit simplicity criterion for the generalized Verma modules induced from V ( 𝐚 , b ) {V({\mathbf{a}},b)} and obtain a family of simple affine modules from ( 𝝀 ; 𝐚 , b ) {\mathcal{F}(\boldsymbol{\lambda};{\mathbf{a}},b)} , which can be viewed as the non-weight version of loop modules.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3