Affiliation:
1. School of Mathematics and Information Science , Guangzhou University , Guangzhou 510006 , P. R. China
2. School of Public Health , Tianjin Medical University , Tianjin , P. R. China
3. School of Mathematics and Statistics , Zhengzhou University , Zhengzhou , P. R. China
Abstract
Abstract
Let
d
≥
1
{d\geq 1}
be an integer and let
𝒲
d
{\mathcal{W}_{d}}
be the Witt algebra.
For any admissible
𝒲
d
{\mathcal{W}_{d}}
-module P and any
𝔤
𝔩
d
{\mathfrak{gl}_{d}}
-module V,
one can form a
𝒲
d
{\mathcal{W}_{d}}
-module
ℱ
(
P
,
V
)
{\mathcal{F}(P,V)}
, which as a vector space is
P
⊗
V
{P\otimes V}
.
Since
𝒲
d
{\mathcal{W}_{d}}
has a natural subalgebra isomorphic to
𝔰
𝔩
d
+
1
{\mathfrak{sl}_{d+1}}
, we can view
ℱ
(
P
,
V
)
{\mathcal{F}(P,V)}
as
an
𝔰
𝔩
d
+
1
{\mathfrak{sl}_{d+1}}
-module. Taking
P
=
Ω
(
𝝀
)
{P=\Omega(\boldsymbol{\lambda})}
, the rank-1
U
(
𝔥
)
{U(\mathfrak{h})}
-free
𝒲
d
{\mathcal{W}_{d}}
-module, and
V
=
V
(
𝐚
,
b
)
{V=V({\mathbf{a}},b)}
, the simple cuspidal module over
𝔤
𝔩
d
{\mathfrak{gl}_{d}}
, we get
the special
𝔰
𝔩
d
+
1
{\mathfrak{sl}_{d+1}}
-modules
ℱ
(
𝝀
;
𝐚
,
b
)
=
ℱ
(
Ω
(
𝝀
)
,
V
(
𝐚
,
b
)
)
\mathcal{F}(\boldsymbol{\lambda};{\mathbf{a}},b)=\mathcal{F}(\Omega(%
\boldsymbol{\lambda}),V({\mathbf{a}},b))
which are
U
(
𝔥
)
{U(\mathfrak{h})}
-free modules of infinite rank.
We determine the necessary and sufficient condition for the
𝔰
𝔩
d
+
1
{\mathfrak{sl}_{d+1}}
-module
ℱ
(
𝝀
;
𝐚
,
b
)
{\mathcal{F}(\boldsymbol{\lambda};{\mathbf{a}},b)}
to be simple, and for the non-simple case we construct their proper submodules explicitly.
At last, using the above results, we deduce an explicit simplicity criterion for the generalized Verma modules induced from
V
(
𝐚
,
b
)
{V({\mathbf{a}},b)}
and obtain a family of simple affine modules from
ℱ
(
𝝀
;
𝐚
,
b
)
{\mathcal{F}(\boldsymbol{\lambda};{\mathbf{a}},b)}
, which can be viewed as
the non-weight version of loop modules.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,General Mathematics