Normal elements in the mod-𝑝 Iwasawa algebra over SL𝑛(ℤ𝑝): A computational approach

Author:

Han Dong1,Wei Feng2

Affiliation:

1. School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, 454000, P. R. China

2. School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, 100081, P. R. China

Abstract

AbstractThis is the last in a series of articles where we are concerned with normal elements of noncommutative Iwasawa algebras over {\mathrm{SL}_{n}(\mathbb{Z}_{p})}. Our goal in this portion is to give a positive answer to an open question in [D. Han and F. Wei, Normal elements of noncommutative Iwasawa algebras over \mathrm{SL}_{3}(\mathbb{Z}_{p}), Forum Math. 31 2019, 1, 111–147] and make up for an earlier mistake in [F. Wei and D. Bian, Normal elements of completed group algebras over \mathrm{SL}_{n}(\mathbb{Z}_{p}), Internat. J. Algebra Comput. 20 2010, 8, 1021–1039] simultaneously. Let n ({n\geq 2}) be a positive integer. Let p ({p>2}) be a prime integer, {\mathbb{Z}_{p}} the ring of p-adic integers and {\mathbb{F}_{p}} the finite filed of p elements. Let {G=\Gamma_{1}(\mathrm{SL}_{n}(\mathbb{Z}_{p}))} be the first congruence subgroup of the special linear group {\mathrm{SL}_{n}(\mathbb{Z}_{p})} and {\Omega_{G}} the mod-p Iwasawa algebra of G defined over {\mathbb{F}_{p}}. By a purely computational approach, for each nonzero element {W\in\Omega_{G}}, we prove that W is a normal element if and only if W contains constant terms. In this case, W is a unit. Also, the main result has been already proved under “nice prime” condition by Ardakov, Wei and Zhang [Non-existence of reflexive ideals in Iwasawa algebras of Chevalley type, J. Algebra 320 2008, 1, 259–275; Reflexive ideals in Iwasawa algebras, Adv. Math. 218 2008, 3, 865–901]. This paper currently provides a new proof without the “nice prime” condition. As a consequence of the above-mentioned main result, we observe that the center of {\Omega_{G}} is trivial.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference58 articles.

1. Normal elements of completed group algebras over SLn⁢(ℤp)\mathrm{SL}_{n}(\mathbb{Z}_{p});Internat. J. Algebra Comput.,2010

2. Presentation of the Iwasawa algebra of the pro-p Iwahori subgroup of GLn⁢(ℤp){\mathrm{GL}_{n}(\mathbb{Z}_{p})};Preprint,2017

3. The GL2\rm GL_{2} main conjecture for elliptic curves without complex multiplication;Publ. Math. Inst. Hautes Études Sci.,2005

4. Completed group algebras without zero divisors;Arch. Math. (Basel),1988

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3