Affiliation:
1. School of Mathematical Sciences , Henan Institute of Science and Technology , Xinxiang 453003 , P. R. China
2. School of Mathematics and Statistics , Zhoukou Normal University , Zhoukou 466001 , P. R. China
3. Department of Applied Mathematics , Anhui University of Technology , Ma’anshan 243002 , P. R. China
Abstract
Abstract
Let
0
<
ρ
<
1
{0<\rho<1}
and let
{
a
j
,
b
j
,
n
j
}
j
=
1
∞
{\{a_{j},b_{j},n_{j}\}_{j=1}^{\infty}}
be a sequence of positive integers with an upper bound. Associated with them, there exists a unique Borel probability measure
μ
ρ
,
{
0
,
a
j
,
b
j
}
,
{
n
j
}
{\mu_{\rho,\{0,a_{j},b_{j}\},\{n_{j}\}}}
generated by the following infinite convolution of discrete measures:
μ
ρ
,
{
0
,
a
j
,
b
j
}
,
{
n
j
}
=
δ
ρ
n
1
{
0
,
a
1
,
b
1
}
∗
δ
ρ
n
1
+
n
2
{
0
,
a
2
,
b
2
}
∗
δ
ρ
n
1
+
n
2
+
n
3
{
0
,
a
3
,
b
3
}
∗
⋯
,
\mu_{\rho,\{0,a_{j},b_{j}\},\{n_{j}\}}=\delta_{\rho^{n_{1}}\{0,a_{1},b_{1}\}}%
\ast\delta_{\rho^{n_{1}+n_{2}}\{0,a_{2},b_{2}\}}\ast\delta_{\rho^{n_{1}+n_{2}+%
n_{3}}\{0,a_{3},b_{3}\}}\ast\cdots,
where
gcd
(
a
j
,
b
j
)
=
1
{\gcd(a_{j},b_{j})=1}
for all
j
∈
ℕ
{j\in{\mathbb{N}}}
. In this paper, we show that
L
2
(
μ
ρ
,
{
0
,
a
j
,
b
j
}
,
{
n
j
}
)
{L^{2}(\mu_{\rho,\{0,a_{j},b_{j}\},\{n_{j}\}})}
admits an exponential orthonormal basis if and only if the following two conditions are satisfied: (i)
{
a
j
,
b
j
}
≡
{
±
1
}
(
mod
3
)
{\{a_{j},b_{j}\}\equiv\{\pm 1\}~{}(\mathrm{mod}~{}3)}
for all
j
≥
1
{j\geq 1}
; (ii) there exists a natural number r such that
ρ
-
r
∈
3
ℕ
{\rho^{-r}\in 3{\mathbb{N}}}
and
n
j
∈
r
ℕ
{n_{j}\in r{\mathbb{N}}}
for all
j
≥
2
{j\geq 2}
.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Henan Province
Education Department of Henan Province
Subject
Applied Mathematics,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献