Geometric nilpotent Lie algebras and zero-dimensional simple complete intersection singularities

Author:

Hussain Naveed1,Yau Stephen S.-T.2,Zuo Huaiqing3

Affiliation:

1. School of Data Sciences , Guangzhou Huashang College , Guangzhou 511300 P. R. China

2. Department of Mathematical Sciences , Tsinghua University , Beijing , 100084; and Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Huairou 101400 , P. R. China

3. Department of Mathematical Sciences , Tsinghua University , Beijing , 100084 , P. R. China

Abstract

Abstract The Levi theorem tells us that every finite-dimensional Lie algebra is the semi-direct product of a semi-simple Lie algebra and a solvable Lie algebra. Brieskorn gave the connection between simple Lie algebras and simple singularities. Simple Lie algebras have been well understood, but not the solvable (nilpotent) Lie algebras. Therefore, it is important to establish connections between singularities and solvable (nilpotent) Lie algebras. In this paper, we give a new connection between nilpotent Lie algebras and nilradicals of derivation Lie algebras of isolated complete intersection singularities. As an application, we obtain the correspondence between the nilpotent Lie algebras of dimension less than or equal to 7 and the nilradicals of derivation Lie algebras of isolated complete intersection singularities with modality less than or equal to 1. Moreover, we give a new characterization theorem for zero-dimensional simple complete intersection singularities.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference42 articles.

1. A. G. Aleksandrov, Normal forms of one-dimensional quasihomogeneous complete intersections, Mat. Sb. (N.S.) 117(159) (1982), no. 1, 3–31.

2. A. G. Aleksandrov and B. Martin, Derivations and deformations of Artinian algebras, Beitr. Algebra Geom. 33 (1992), 115–130.

3. V. I. Arnold, S. M. Guseĭn-Zade and A. N. Varchenko, Singularities of Differentiable Maps. Vol. I, 2nd ed., MCNMO, Moscow, 2004.

4. C.-Y. Chao, Uncountably many nonisomorphic nilpotent Lie algebras, Proc. Amer. Math. Soc. 13 (1962), 903–906.

5. B. Chen, H. Chen, S. S.-T. Yau and H. Zuo, The nonexistence of negative weight derivations on positive dimensional isolated singularities: Generalized Wahl conjecture, J. Differential Geom. 115 (2020), no. 2, 195–224.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3