Affiliation:
1. Department of Mathematics , 2462 University of Chicago , Chicago , USA
Abstract
Abstract
Let p be an odd prime and let
ρ
:
ℤ
/
p
→
GL
n
(
ℤ
)
{\rho:\mathbb{Z}/p\rightarrow\operatorname{{GL}}_{n}(\mathbb{Z})}
be an action of
ℤ
/
p
{\mathbb{Z}/p}
on a lattice and let
Γ
:=
ℤ
n
⋊
ρ
ℤ
/
p
{\Gamma:=\mathbb{Z}^{n}\rtimes_{\rho}\mathbb{Z}/p}
be the corresponding semidirect product.
The torus bundle
M
:=
T
ρ
n
×
ℤ
/
p
S
ℓ
{M:=T^{n}_{\rho}\times_{\mathbb{Z}/p}S^{\ell}}
over the lens space
S
ℓ
/
ℤ
/
p
{S^{\ell}/\mathbb{Z}/p}
has fundamental group Γ.
When
ℤ
/
p
{\mathbb{Z}/p}
fixes only the origin of
ℤ
n
{\mathbb{Z}^{n}}
, Davis and Lück (2021) compute the L-groups
L
m
〈
j
〉
(
ℤ
[
Γ
]
)
{L^{\langle j\rangle}_{m}(\mathbb{Z}[\Gamma])}
and the structure set
𝒮
geo
,
s
(
M
)
{\mathcal{{S}}^{{\rm geo},s}(M)}
.
In this paper, we extend these computations to all actions of
ℤ
/
p
{\mathbb{Z}/p}
on
ℤ
n
{\mathbb{Z}^{n}}
.
In particular, we compute
L
m
〈
j
〉
(
ℤ
[
Γ
]
)
{L^{\langle j\rangle}_{m}(\mathbb{Z}[\Gamma])}
and
𝒮
geo
,
s
(
M
)
{\mathcal{{S}}^{{\rm geo},s}(M)}
in a case where
E
¯
Γ
{\underline{E}\Gamma}
has a non-discrete singular set.