Abstract
Abstract
The integral group ring
{\mathbb{Z}G}
of a group G has only trivial central units if the only central units of
{\mathbb{Z}G}
are
{\pm z}
for z in the center of G. We show that the order of a finite solvable group G with this property can only be divisible by the primes 2, 3, 5 and 7, by linking this to inverse semi-rational groups and extending one result on this class of groups. We also classify the Frobenius groups whose integral group rings have only trivial central units.
Subject
Applied Mathematics,General Mathematics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献