Affiliation:
1. Department of Mathematics , Indian Institute of Science Education and Research , Dr. Homi Bhabha Road , Pune 411008 , India
Abstract
Abstract
Let
Ω
⊂
R
n
\Omega\subset\mathbb{R}^{n}
be any open set and 𝑢 a weak supersolution of
L
u
=
c
(
x
)
g
(
|
u
|
)
u
|
u
|
\mathcal{L}u=c(x)g(\lvert u\rvert)\frac{u}{\lvert u\rvert}
, where
L
u
(
x
)
=
p.v.
∫
R
n
g
(
|
u
(
x
)
−
u
(
y
)
|
|
x
−
y
|
s
)
u
(
x
)
−
u
(
y
)
|
u
(
x
)
−
u
(
y
)
|
K
(
x
,
y
)
d
y
|
x
−
y
|
s
\mathcal{L}u(x)=\textup{p.v.}\int_{\mathbb{R}^{n}}g\biggl{(}\frac{\lvert u(x)-u(y)\rvert}{\lvert x-y\rvert^{s}}\biggr{)}\frac{u(x)-u(y)}{\lvert u(x)-u(y)\rvert}K(x,y)\frac{dy}{\lvert x-y\rvert^{s}}
and
g
=
G
′
g=G^{\prime}
for some Young function 𝐺.
This note imparts a Hopf type lemma and strong minimum principle for 𝑢 when
c
(
x
)
c(x)
is continuous in
Ω
¯
\overline{\Omega}
that extend the results of Del Pezzo and Quaas [A Hopf’s lemma and a strong minimum principle for the fractional 𝑝-Laplacian,
J. Differential Equations
263 (2017), 1, 765–778] in fractional Orlicz–Sobolev setting.
Subject
Applied Mathematics,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献