Affiliation:
1. Dipartimento di Matematica e Fisica “Ennio De Giorgi” , Università del Salento , C. P. 193, 73100 , Lecce , Italy
Abstract
Abstract
We prove Schauder estimates for elliptic and parabolic problems governed by the degenerate operator
ℒ
=
Δ
x
+
D
y
y
+
c
y
D
y
,
\mathcal{L}=\Delta_{x}+D_{yy}+\frac{c}{y}D_{y},
in the half-space
Ω
=
{
(
x
,
y
)
:
x
∈
ℝ
N
,
y
>
0
}
{\Omega=\{(x,y):x\in\mathbb{R}^{N},y>0\}}
, under Neumann boundary conditions at
y
=
0
{y=0}
.
Subject
Applied Mathematics,General Mathematics
Reference14 articles.
1. M. Abramowitz and I. A. Stegun,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,
National Bureau Stand. Appl. Math. 55,
U. S. Government Printing Office, Washington, 1964.
2. L. Caffarelli and L. Silvestre,
An extension problem related to the fractional Laplacian,
Comm. Partial Differential Equations 32 (2007), no. 7–9, 1245–1260.
3. H. Dong and T. Phan,
On parabolic and elliptic equations with singular or degenerate coefficients,
preprint (2020), https://arxiv.org/abs/2007.04385.
4. H. Dong and T. Phan,
Parabolic and elliptic equations with singular or degenerate coefficients: the Dirichlet problem,
Trans. Amer. Math. Soc. 374 (2021), no. 9, 6611–6647.
5. H. Dong and T. Phan,
Weighted mixed-norm
L
p
L_{p}
-estimates for elliptic and parabolic equations in non-divergence form with singular coefficients,
Rev. Mat. Iberoam. 37 (2021), no. 4, 1413–1440.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献