Author:
Dubsky Brendan Frisk,Guo Xiangqian,Yao Yufeng,Zhao Kaiming
Abstract
Abstract
Let
{n\geq 2}
be an integer,
{\mathbb{S}_{n}}
the Lie algebra of divergence zero vector fields on an n-dimensional torus, and
{\mathcal{K}_{n}}
the Weyl algebra over the Laurent polynomial algebra
{A_{n}=\mathbb{C}[x_{1}^{\pm 1},x_{2}^{\pm 1},\dots,x_{n}^{\pm 1}]}
. For any
{\mathfrak{sl}_{n}}
-module V and any module P over
{\mathcal{K}_{n}}
, we define an
{\mathbb{S}_{n}}
-module structure on the tensor product
{P\otimes V}
. In this paper, necessary and sufficient conditions for the
{\mathbb{S}_{n}}
-modules
{P\otimes V}
to be simple are given, and an isomorphism criterion for nonminuscule
{\mathbb{S}_{n}}
-modules is provided. More precisely, all nonminuscule
{\mathbb{S}_{n}}
-modules are simple, and pairwise nonisomorphic. For minuscule
{\mathbb{S}_{n}}
-modules, minimal and maximal submodules are concretely determined.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shanghai
Natural Sciences and Engineering Research Council of Canada
Subject
Applied Mathematics,General Mathematics
Reference70 articles.
1. Lowest-energy representations of non-centrally extended diffeomorphism algebras;Comm. Math. Phys.,1999
2. Jet modules;Canad. J. Math.,2007
3. Irreducible modules for the Lie algebra of divergence zero vector fields on a torus;Comm. Algebra,2016
4. Jet modules;Canad. J. Math.,2007
5. Simple Witt modules that are finitely generated over the Cartan subalgebra;Preprint,2017
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献