Incidences between points and generalized spheres over finite fields and related problems

Author:

Phuong Nguyen D.1,Thang Pham2,Vinh Le A.3

Affiliation:

1. 1University of Science, Vnu, Hanoi, Vietnam

2. 2Department of Mathematics, EPF Lausanne, Switzerland

3. 3University of Education, Vnu, Hanoi, Vietnam

Abstract

AbstractLet ${\mathbb{F}_{q}}$ be a finite field of q elements, where q is a large odd prime power and${Q=a_{1}x_{1}^{c_{1}}+\cdots+a_{d}x_{d}^{c_{d}}\in\mathbb{F}_{q}[x_{1},\ldots,% x_{d}]},$where ${2\leq c_{i}\leq N}$, ${\gcd(c_{i},q)=1}$, and ${a_{i}\in\mathbb{F}_{q}}$ for all ${1\leq i\leq d}$. A Q-sphere is a set of the form ${\bigl{\{}\boldsymbol{x}\in\mathbb{F}_{q}^{d}\mid Q(\boldsymbol{x}-\boldsymbol% {b})=r\bigr{\}}},$where ${\boldsymbol{b}\in\mathbb{F}_{q}^{d},r\in\mathbb{F}_{q}}$. We prove bounds on the number of incidences between a point set ${{{\mathcal{P}}}}$ and a Q-sphere set ${{{\mathcal{S}}}}$, denoted by ${I({{\mathcal{P}}},{{\mathcal{S}}})}$, as the following:$\Biggl{|}I({{\mathcal{P}}},{{\mathcal{S}}})-\frac{|{{\mathcal{P}}}||{{\mathcal% {S}}}|}{q}\Biggr{|}\leq q^{d/2}\sqrt{|{{\mathcal{P}}}||{{\mathcal{S}}}|}.$We also give a version of this estimate over finite cyclic rings ${\mathbb{Z}/q\mathbb{Z}}$, where q is an odd integer. As a consequence of the above bounds, we give an estimate for the pinned distance problem and a bound on the number of incidences between a random point set and a random Q-sphere set in ${\mathbb{F}_{q}^{d}}$. We also study the finite field analogues of some combinatorial geometry problems, namely, the number of generalized isosceles triangles, and the existence of a large subset without repeated generalized distances.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference44 articles.

1. On the generalized Erdős–Falconer distance problems over finite fields;J. Number Theory,2013

2. A sum-product estimate in finite fields, and applications;Geom. Funct. Anal.,2004

3. On point-line incidences in vector spaces over finite fields;Discrete Appl. Math.,2014

4. The solvability of norm, bilinear and quadratic equations over finite fields via spectra of graph;Forum Math.,2014

5. Point sets with distinct distances;Combinatorica,1995

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Almost spanning distance trees in subsets of finite vector spaces;Bulletin of the London Mathematical Society;2024-03-08

2. A point-sphere incidence bound in odd dimensions and applications;Comptes Rendus. Mathématique;2022-06-22

3. On the Finite Field Cone Restriction Conjecture in Four Dimensions and Applications in Incidence Geometry;International Mathematics Research Notices;2021-08-06

4. Repeated Distances and Dot Products in Finite Fields;Operator Theory and Harmonic Analysis;2021

5. Incidences between planes over finite fields;Proceedings of the American Mathematical Society;2019-01-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3