On the finiteness of solutions for polynomial-factorial Diophantine equations

Author:

Takeda Wataru1ORCID

Affiliation:

1. Department of Mathematics , Nagoya University , Chikusa-ku , Nagoya 464-8602 , Japan

Abstract

Abstract We study the Diophantine equations obtained by equating a polynomial and the factorial function, and prove the finiteness of integer solutions under certain conditions. For example, we show that there exist only finitely many l such that l ! {l!} is represented by N A ( x ) {N_{A}(x)} , where N A {N_{A}} is a norm form constructed from the field norm of a field extension K / 𝐐 {K/\mathbf{Q}} . We also deal with the equation N A ( x ) = l ! S {N_{A}(x)=l!_{S}} , where l ! S {l!_{S}} is the Bhargava factorial. In this paper, we also show that the Oesterlé–Masser conjecture implies that for any infinite subset S of 𝐙 {\mathbf{Z}} and for any polynomial P ( x ) 𝐙 [ x ] {P(x)\in\mathbf{Z}[x]} of degree 2 or more the equation P ( x ) = l ! S {P(x)=l!_{S}} has only finitely many solutions ( x , l ) {(x,l)} . For some special infinite subsets S of 𝐙 {\mathbf{Z}} , we can show the finiteness of solutions for the equation P ( x ) = l ! S {P(x)=l!_{S}} unconditionally.

Funder

Japan Society for the Promotion of Science

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference19 articles.

1. D. Berend and J. R. E. Harmse, On polynomial-factorial Diophantine equations, Trans. Amer. Math. Soc. 358 (2006), no. 4, 1741–1779.

2. D. Berend and C. F. Osgood, On the equation P⁢(x)=n!P(x)=n! and a question of Erdős, J. Number Theory 42 (1992), no. 2, 189–193.

3. M. Bhargava, P-orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math. 490 (1997), 101–127.

4. M. Bhargava, The factorial function and generalizations, Amer. Math. Monthly 107 (2000), no. 9, 783–799.

5. H. Brocard, Question 166, Nouv. Corres. Math. 2 (1876), Paper No. 287.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Product of Factorials Equal Another Product of Factorials;Bulletin of the Iranian Mathematical Society;2024-08-13

2. Existence of the solutions to the Brocard–Ramanujan problem for norm forms;Proceedings of the American Mathematical Society, Series B;2023-11-16

3. Power savings for counting solutions to polynomial-factorial equations;Advances in Mathematics;2023-06

4. Explicit interval estimates for prime numbers;MATH COMPUT;2021-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3