Affiliation:
1. School of Mathematics and Statistics and Hubei Key Laboratory of Mathematical Sciences , Central China Normal University , Wuhan , 430079 , P. R. China
2. School of Mathematics and Information Science , Guangzhou University , Guangzhou , 510006 , P. R. China
Abstract
Abstract
We consider the self-similar measure
μ
M
,
𝒟
{\mu_{M,{\mathcal{D}}}}
generated by an expanding real matrix
M
=
(
ρ
-
1
0
0
ρ
-
1
)
∈
M
2
(
ℝ
)
{M=\begin{pmatrix}\rho^{-1}&0\\
0&\rho^{-1}\end{pmatrix}\in M_{2}({\mathbb{R}})}
and a digit set
𝒟
=
{
(
0
0
)
,
(
a
b
)
,
(
c
d
)
,
(
a
+
c
b
+
d
)
}
⊆
ℤ
2
.
{{\mathcal{D}}=\Biggl{\{}\begin{pmatrix}0\\
0\end{pmatrix},\begin{pmatrix}a\\
b\end{pmatrix},\begin{pmatrix}c\\
d\end{pmatrix},\begin{pmatrix}a+c\\
b+d\end{pmatrix}\Biggr{\}}\subseteq{\mathbb{Z}}^{2}}.
In this paper, we study the spectral and non-spectral problems of
μ
M
,
𝒟
{\mu_{M,{\mathcal{D}}}}
. In this case that
(
a
b
)
{(\begin{smallmatrix}a\\
b\end{smallmatrix})}
and
(
c
d
)
{(\begin{smallmatrix}c\\
d\end{smallmatrix})}
are two independent vectors, we prove that if
ρ
-
1
∈
ℤ
{\rho^{-1}\in{\mathbb{Z}}}
, then
μ
M
,
𝒟
{\mu_{M,{\mathcal{D}}}}
is a spectral measure if and only if
ρ
-
1
∈
2
ℤ
{\rho^{-1}\in 2{\mathbb{Z}}}
.
For the case that
(
a
b
)
{(\begin{smallmatrix}a\\
b\end{smallmatrix})}
and
(
c
d
)
{(\begin{smallmatrix}c\\
d\end{smallmatrix})}
are two dependent vectors, we first give the sufficient and necessary condition for
L
2
(
μ
M
,
𝒟
)
{L^{2}(\mu_{M,{\mathcal{D}}})}
to contain an infinite orthogonal set of exponential functions. Based on this result, we can give the exact cardinality of orthogonal exponential functions in
L
2
(
μ
M
,
𝒟
)
{L^{2}(\mu_{M,{\mathcal{D}}})}
when
L
2
(
μ
M
,
𝒟
)
{L^{2}(\mu_{M,{\mathcal{D}}})}
does not admit any infinite orthogonal set of exponential functions by classifying the values of ρ.
Subject
Applied Mathematics,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献