Affiliation:
1. Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, 24098Kiel, Germany
Abstract
AbstractInspired by recent work of Carlson, Friedlander and Pevtsova concerning modules for p-elementary abelian groups {E_{r}} of rank r over a field of characteristic {p>0}, we introduce the notions of modules with constant d-radical rank and modules with constant d-socle rank for the generalized Kronecker algebra {\mathcal{K}_{r}=k\Gamma_{r}} with {r\geq 2} arrows and {1\leq d\leq r-1}.
We study subcategories given by modules with the equal d-radical property and the equal d-socle property.
Utilizing the simplification method due to Ringel, we prove that these subcategories in {\operatorname{mod}\mathcal{K}_{r}} are of wild type.
Then we use a natural functor {\operatorname{\mathfrak{F}}\colon{\operatorname{mod}\mathcal{K}_{r}}\to%
\operatorname{mod}kE_{r}} to transfer our results to {\operatorname{mod}kE_{r}}.
Funder
Deutsche Forschungsgemeinschaft
Subject
Applied Mathematics,General Mathematics
Reference46 articles.
1. Elementary modules;Math. Z.,1996
2. Modules of constant Jordan type;J. Reine Angew. Math.,2008
3. AR-components for generalized Beilinson algebras;Proc. Amer. Math. Soc.,2015
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献