Affiliation:
1. Department of Mathematics , Shaanxi University of Science and Technology , Xi’an 710021 , P. R. China
Abstract
Abstract
Let
μ
M
,
D
{\mu_{M,D}}
be a self-affine measure associated with
an expanding real matrix
M
=
diag
[
ρ
1
,
ρ
2
,
ρ
3
]
{M=\operatorname{diag}[\rho_{1},\rho_{2},\rho_{3}]}
and the digit set
D
=
{
0
,
e
1
,
e
2
,
e
3
}
{D=\{0,e_{1},e_{2},e_{3}\}}
in the space
ℝ
3
{\mathbb{R}^{3}}
, where
|
ρ
1
|
,
|
ρ
2
|
,
|
ρ
3
|
∈
(
1
,
∞
)
{\lvert\rho_{1}\rvert,\lvert\rho_{2}\rvert,\lvert\rho_{3}\rvert\in(1,\infty)}
and
e
1
,
e
2
,
e
3
{e_{1},e_{2},e_{3}}
is the standard basis of unit column vectors in
ℝ
3
{\mathbb{R}^{3}}
.
In this paper, we mainly consider the case
ρ
1
∈
{
p
q
:
p
∈
2
ℤ
,
q
∈
2
ℤ
-
1
}
,
ρ
2
,
ρ
3
∈
{
p
q
:
p
,
q
∈
2
ℤ
-
1
}
.
\rho_{1}\in\Bigl{\{}\frac{p}{q}:p\in 2\mathbb{Z},\,q\in 2\mathbb{Z}-1\Bigr{\}}%
,\quad\rho_{2},\rho_{3}\in\Bigl{\{}\frac{p}{q}:p,q\in 2\mathbb{Z}-1\Bigr{\}}.
We prove that if
ρ
2
=
ρ
3
{\rho_{2}=\rho_{3}}
, then there exist at most 4 mutually orthogonal exponential
functions in the Hilbert space
L
2
(
μ
M
,
D
)
{L^{2}(\mu_{M,D})}
, where the number 4 is the best upper bound.
If
ρ
2
=
-
ρ
3
{\rho_{2}=-\rho_{3}}
, then there exist at most 8 mutually orthogonal exponential
functions in
L
2
(
μ
M
,
D
)
{L^{2}(\mu_{M,D})}
, where the number 8 is the best upper bound.
If
|
ρ
3
|
≠
|
ρ
2
|
{\lvert\rho_{3}\rvert\neq\lvert\rho_{2}\rvert}
, then there are any number of orthogonal exponentials in
L
2
(
μ
M
,
D
)
{L^{2}(\mu_{M,D})}
.
This gives the exact number of orthogonal exponentials on the spatial Sierpinski gasket in the above case.
Subject
Applied Mathematics,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献