Contractibility of the stability manifold for silting-discrete algebras

Author:

Pauksztello David1,Saorín Manuel2,Zvonareva Alexandra3

Affiliation:

1. Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, United Kingdom

2. Departamento de Matemáticas, Universidad de Murcia, Aptdo. 4021, 30100Espinardo, Murcia, Spain

3. Chebyshev Laboratory, St. Petersburg State University, 14th Line 29B, St. Petersburg199178, Russia

Abstract

AbstractWe show that any bounded t-structure in the bounded derived category of a silting-discrete algebra is algebraic, i.e. has a length heart with finitely many simple objects. As a corollary, we obtain that the space of Bridgeland stability conditions for a silting-discrete algebra is contractible.

Funder

Russian Foundation for Basic Research

Ministerio de Economía y Competitividad

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference70 articles.

1. Tilting in abelian categories and quasitilted algebras;Mem. Amer. Math. Soc.,1996

2. Representation theory of Artin algebras. II;Comm. Algebra,1974

3. Stability conditions, torsion theories and tilting;J. Lond. Math. Soc. (2),2010

4. On exact categories and applications to triangulated adjoints and model structures;Adv. Math.,2011

5. The classification of two-term tiling complexes for Brauer graph algebras;Proceedings of the 48th Symposium on Ring Theory and Representation Theory,2016

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. WHEN IS THE SILTING-DISCRETENESS INHERITED?;Nagoya Mathematical Journal;2024-04-01

2. Co-t-structures, cotilting and cotorsion pairs;Mathematical Proceedings of the Cambridge Philosophical Society;2023-03-10

3. A -tilting approach to the first Brauer-Thrall conjecture;Proceedings of the American Mathematical Society;2022-07-29

4. Stability conditions for contraction algebras;Forum of Mathematics, Sigma;2022

5. Silting and Tilting for Weakly Symmetric Algebras;Algebras and Representation Theory;2021-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3