Singular values and evenness symmetry in random matrix theory

Author:

Bornemann Folkmar1,Forrester Peter J.2

Affiliation:

1. 1Zentrum Mathematik – M3, Technische Universität München, 85747 Garching bei München, Germany

2. 2Department of Mathematics and Statistics, University of Melbourne, Swanston St, Parkville Victoria 3010, Australia; and ARC Centre of Excellence for Mathematical & Statistical Frontiers, University of Melbourne, Parkville VIC 3010, Australia

Abstract

AbstractComplex Hermitian random matrices with a unitary symmetry can be distinguished by a weight function. When this is even, it is a known result that the distribution of the singular values can be decomposed as the superposition of two independent eigenvalue sequences distributed according to particular matrix ensembles with chiral unitary symmetry. We give decompositions of the distribution of singular values, and the decimation of the singular values – whereby only even, or odd, labels are observed – for real symmetric random matrices with an orthogonal symmetry, and even weight. This requires further specifying the functional form of the weight to one of three types – Gauss, symmetric Jacobi or Cauchy. Inter-relations between gap probabilities with orthogonal and unitary symmetry follow as a corollary. The Gauss case has appeared in a recent work of Bornemann and La Croix. The Cauchy case, when appropriately specialised and upon stereographic projection, gives decompositions for the analogue of the singular values for the circular unitary and circular orthogonal ensembles.

Funder

Deutsche Forschungsgemeinschaft

Australian Research Council

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference30 articles.

1. Generalisations of Legendre’s formula K⁢E′-(K-E)⁢K′=12⁢π${KE^{\prime}-(K-E)K^{\prime}=\frac{1}{2}\pi}$;Proc. Lond. Math. Soc.,1905

2. Interrelationships between orthogonal, unitary and symplectic matrix ensembles;Random Matrix Models and Their Applications,2001

3. Sur la loi limite de l’espacement des valeurs propres d’une matrice aléatoire;Nucl. Phys.,1961

4. Power series for level spacing functions of random matrix ensembles;Z. Phys. B,1992

5. On some multiple integrals involving determinants;J. Indian Math. Soc. (N.S.),1955

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3