Affiliation:
1. Simion Stoilow Institute of Mathematics, Research unit 5, P. O. Box 1-764, Bucharest014700, Romania
2. Simion Stoilow Institute of Mathematics, P. O. Box 1-764, Bucharest014700, Romania
Abstract
AbstractLet {K/\mathbb{Q}} be a finite Galois extension.
Let {\chi_{1},\ldots,\chi_{r}} be {r\geq 1} distinct characters of the Galois group with the associated Artin L-functions {L(s,\chi_{1}),\ldots,L(s,\chi_{r})}.
Let {m\geq 0}.
We prove that the derivatives {L^{(k)}(s,\chi_{j})}, {1\leq j\leq r}, {0\leq k\leq m}, are linearly independent over the field of meromorphic functions of order {<1}.
From this it follows that the L-functions corresponding to the irreducible characters are algebraically independent over the field of meromorphic functions of order {<1}.
Subject
Applied Mathematics,General Mathematics
Reference14 articles.
1. On Artins’s L-functions. I;J. Reine Angew. Math.,2001
2. General linear independence of a class of multiplicative functions;Arch. Math.,2004
3. Linear independence of L-functions;Forum Math.,2006
4. On Artins’s L-functions. I;J. Reine Angew. Math.,2001
5. Zur Theorie der L-Reihen mit allgemeinen Gruppencharakteren;Abh. Math. Semin. Univ. Hambg.,1931
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献