From Freudenthal’s spectral theorem to projectable hulls of unital Archimedean lattice-groups, through compactifications of minimal spectra

Author:

Ball Richard N.,Marra Vincenzo,McNeill Daniel,Pedrini Andrea

Abstract

AbstractWe use a landmark result in the theory of Riesz spaces – Freudenthal’s 1936 spectral theorem – to canonically represent any Archimedean lattice-ordered groupGwith a strong unit as a (non-separating) lattice-group of real-valued continuous functions on an appropriateG-indexed zero-dimensional compactification{w_{G}Z_{G}}of its space{Z_{G}}ofminimalprime ideals. The two further ingredients needed to establish this representation are the Yosida representation ofGon its space{X_{G}}ofmaximalideals, and the well-known continuous surjection of{Z_{G}}onto{X_{G}}. We then establish our main result by showing that the inclusion-minimal extension of this representation ofGthat separates the points of{Z_{G}}– namely, the sublattice subgroup of{\operatorname{C}(Z_{G})}generated by the image ofGalong with all characteristic functions of clopen (closed and open) subsets of{Z_{G}}which are determined by elements ofG– is precisely the classical projectable hull ofG. Our main result thus reveals a fundamental relationship between projectable hulls and minimal spectra, and provides the most direct and explicit construction of projectable hulls to date. Our techniques do require the presence of a strong unit.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference46 articles.

1. Real closed rings. I: Residue rings of rings of continuous functions;Fund. Math.,1986

2. Representing and ringifying a Riesz space;Symposia Mathematica. Vol. XXI: Convegno sulle Misure su Gruppi e su Spazi Vettoriali, Convegno sui Gruppi e Anelli Ordinati,1977

3. Complemented lattice-ordered groups;Indag. Math. (N.S.),1990

4. Teilweise geordnete Moduln;Proc. Akad. Wet. Amsterdam,1936

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3