Time-step heat problem on the mesh: asymptotic behavior and decay rates

Author:

Abadias Luciano1ORCID,González-Camus Jorge2ORCID,Rueda Silvia3ORCID

Affiliation:

1. Departamento de Matemáticas , Instituto Universitario de Matemáticas y Aplicaciones , Universidad de Zaragoza , 50009 Zaragoza , Spain

2. Departamento de Matemática , Facultad de Ciencias Naturales, Matemática y del Medio Ambiente , Universidad Tecnológica Metropolitana , Santiago , Chile

3. Departamento de Matemática , Facultad de Ciencias , Universidad del Bío-Bío , Concepción , Chile

Abstract

Abstract In this article, we study the asymptotic behavior and decay of the solution of the fully discrete heat problem. We show basic properties of its solutions, such as the mass conservation principle and their moments, and we compare them to the known ones for the continuous analogue problems. We present the fundamental solution, which is given in terms of spherical harmonics, and we state pointwise and p {\ell^{p}} estimates for that. Such considerations allow to prove decay and large-time behavior results for the solutions of the fully discrete heat problem, giving the corresponding rates of convergence on p {\ell^{p}} spaces.

Funder

Ministerio de Ciencia e Innovación

D.G. Aragón

Universidad de Zaragoza

Agencia Nacional de Investigación y Desarrollo

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3