Differentiability of the evolution map and Mackey continuity

Author:

Hanusch Maximilian1

Affiliation:

1. Institut für Mathematik, Universität Paderborn, Warburger Straße 100, 33098Paderborn, Germany

Abstract

AbstractWe solve the differentiability problem for the evolution map in Milnor’s infinite-dimensional setting. We first show that the evolution map of each {C^{k}}-semiregular Lie group G (for {k\in\mathbb{N}\sqcup\{\mathrm{lip},\infty\}}) admits a particular kind of sequentially continuity – called Mackey k-continuity. We then prove that this continuity property is strong enough to ensure differentiability of the evolution map. In particular, this drops any continuity presumptions made in this context so far. Remarkably, Mackey k-continuity arises directly from the regularity problem itself, which makes it particular among the continuity conditions traditionally considered. As an application of the introduced notions, we discuss the strong Trotter property in the sequentially and the Mackey continuous context. We furthermore conclude that if the Lie algebra of G is a Fréchet space, then G is {C^{k}}-semiregular (for {k\in\mathbb{N}\sqcup\{\infty\}}) if and only if G is {C^{k}}-regular.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference38 articles.

1. The strong Trotter property for locally μ-convex Lie Groups;Preprint,2018

2. Differentiable vectors and unitary representations of Fréchet–Lie supergroups;Math. Z.,2013

3. Regularity of Lie groups;Preprint,2017

4. Remarks on infinite-dimensional Lie groups;Relativity, Groups and Topology. II,1984

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Lax equation and weak regularity of asymptotic estimate Lie groups;Annals of Global Analysis and Geometry;2023-04

2. Continuity of Formal Power Series Products in Nonlinear Control Theory;Foundations of Computational Mathematics;2022-04-05

3. On a Class of Regular Fréchet–Lie Groups;Bulletin of the Iranian Mathematical Society;2020-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3