Gem-induced trisections of compact PL 4-manifolds

Author:

Casali Maria Rita1ORCID,Cristofori Paola1ORCID

Affiliation:

1. Department of Physics, Informatics and Mathematics , University of Modena and Reggio Emilia , Via Campi 213 A, 41125 Modena , Italy

Abstract

Abstract The idea of studying trisections of closed smooth 4-manifolds via (singular) triangulations, endowed with a suitable vertex-labelling by three colors, is due to Bell, Hass, Rubinstein and Tillmann, and has been applied by Spreer and Tillmann to standard simply-connected 4-manifolds, via the so-called simple crystallizations. In the present paper we propose generalizations of these ideas by taking into consideration a possible extension of trisections to compact PL 4-manifolds with connected boundary, which is related to Birman’s special Heegaard sewing, and by analyzing gem-induced trisections, i.e. trisections that can be induced not only by simple crystallizations, but also by any 5-colored graph encoding a PL 4-manifold with empty or connected boundary. This last notion gives rise to that of G-trisection genus, as an analogue, in this context, of the well-known trisection genus. We give conditions on a 5-colored graph ensuring one of its gem-induced trisections – if any – to realize the G-trisection genus, and prove how to determine it directly from the graph. As a consequence, we detect a class of closed simply-connected 4-manifolds, comprehending all standard ones, for which both G-trisection genus and trisection genus coincide with the second Betti number and also with half the value of the graph-defined PL invariant regular genus. Moreover, the existence of gem-induced trisections and an estimation of the G-trisection genus via surgery description is obtained, for each compact PL 4-manifold admitting a handle decomposition lacking in 3-handles.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3