Abstract
AbstractWe motivate and study the reduced Koszul map, relating the invariant bilinear maps on a Lie algebra and the third homology. We show that it is concentrated in degree 0 for any grading in a torsion-free abelian group, and in particular it vanishes whenever the Lie algebra admits a positive grading. We also provide an example of a 12-dimensional nilpotent Lie algebra whose reduced Koszul map does not vanish. In an appendix, we reinterpret the results of Neeb and Wagemann about the second homology of current Lie algebras, which are closely related to the reduced Koszul map.
Subject
Applied Mathematics,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献