Abstract
AbstractThe theory of Barnes beta probability distributions is advanced and related to the Riemann xi function. The scaling invariance, multiplication formula, and Shintani factorization of Barnes multiple gamma functions are reviewed using the approach of Ruijsenaars and shown to imply novel properties of Barnes beta distributions. The applications are given to the meromorphic extension of the Selberg integral as a function of its dimension and the scaling invariance of the underlying probability distribution. This probability distribution in the critical case is described and conjectured to be the distribution of the derivative martingale. The Jacobi triple product is interpreted probabilistically resulting in an approximation of the Riemann xi function by the Mellin transform of the logarithm of a limit of Barnes beta distributions.
Subject
Applied Mathematics,General Mathematics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献