Differential operators, exact pullback formulas of Eisenstein series, and Laplace transforms

Author:

Ibukiyama Tomoyoshi1ORCID

Affiliation:

1. Department of Mathematics , Faculty of Science , Osaka University , Machikaneyama 1-1 , Toyonaka , 560-0043 Japan

Abstract

Abstract For a variable Z = ( z i j ) {Z=(z_{ij})} of the Siegel upper half space H n {H_{n}} of degree n, put Z = ( 1 + δ i j 2 z i j ) 1 i , j n {{\partial}_{Z}=(\frac{1+\delta_{ij}}{2}\frac{{\partial}}{{\partial}z_{ij}})_{% 1\leq i,j\leq n}} . For a polynomial P ( T ) {P(T)} in components of n × n {n\times n} symmetric matrix T, we have P ( Z ) det ( Z ) s = det ( Z ) s Q ( Z - 1 ) {P({\partial}_{Z})\det(Z)^{s}=\det(Z)^{s}Q(Z^{-1})} for some polynomial Q ( T ) {Q(T)} . We show that the correspondence of P and Q are bijective for most s, and give a formula of P for any Q. In particular, when Q is a monomial, we show that such P corresponds exactly to the descending basis developed in a joint work with D, Zagier, for which an explicit generating series is known. By using the above results and the generating series, we give an exact formula for differential operators 𝔻 {{\mathbb{D}}} such that for any Siegel modular forms F of weight k, the restriction Res H n 1 × H n 2 ( 𝔻 F ) {\mathrm{Res}_{H_{n_{1}}\times H_{n_{2}}}({\mathbb{D}}F)} to the diagonal blocks H n 1 × H n 2 H n 1 + n 2 = H n {H_{n_{1}}\times H_{n_{2}}\subset H_{n_{1}+n_{2}}=H_{n}} is a vector-valued Siegel modular forms of weight det k ρ {\det^{k}\rho} , where ρ is a fixed representation of GL n 1 ( ) × GL n 2 ( ) {\mathrm{GL}_{n_{1}}({\mathbb{C}})\times\mathrm{GL}_{n_{2}}({\mathbb{C}})} . These results are applied to give an exact Garrett–Böcherer-type pullback formula for any ρ that describes the restriction of 𝔻 E k n {{\mathbb{D}}E_{k}^{n}} to H n 1 × H n 2 {H_{n_{1}}\times H_{n_{2}}} for holomorphic Siegel Eisenstein series E k n {E_{k}^{n}} of weight k of degree n.

Funder

Japan Society for the Promotion of Science

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference36 articles.

1. H. Atobe, M. Chida, T. Ibukiyama, H. Katsurada and T. Yamauchi, Harder’s conjecture I, preprint (2021), https://arxiv.org/abs/2109.10551.

2. S. Böcherer, Über die Fourier–Jacobi-Entwicklung Siegelscher Eisensteinreihen. II, Math. Z. 189 (1985), no. 1, 81–110.

3. S. Böcherer, Über die Funktionalgleichung automorpher L-Funktionen zur Siegelschen Modulgruppe, J. Reine Angew. Math. 362 (1985), 146–168.

4. S. Böcherer, T. Satoh and T. Yamazaki, On the pullback of a differential operator and its application to vector valued Eisenstein series, Comment. Math. Univ. St. Paul. 41 (1992), no. 1, 1–22.

5. S. Böcherer and R. Schulze-Pillot, On the central critical value of the triple product L-function, Number Theory (Paris 1993–1994), London Math. Soc. Lecture Note Ser. 235, Cambridge University, Cambridge (1996), 1–46.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kurokawa-Mizumoto congruence and differential operators on automorphic forms;Journal of Number Theory;2025-01

2. Harder's conjecture I;Journal of the Mathematical Society of Japan;2023-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3