Affiliation:
1. Department of Mathematics , Faculty of Science , Osaka University , Machikaneyama 1-1 , Toyonaka , 560-0043 Japan
Abstract
Abstract
For a variable
Z
=
(
z
i
j
)
{Z=(z_{ij})}
of the Siegel upper half space
H
n
{H_{n}}
of degree n,
put
∂
Z
=
(
1
+
δ
i
j
2
∂
∂
z
i
j
)
1
≤
i
,
j
≤
n
{{\partial}_{Z}=(\frac{1+\delta_{ij}}{2}\frac{{\partial}}{{\partial}z_{ij}})_{%
1\leq i,j\leq n}}
.
For a polynomial
P
(
T
)
{P(T)}
in components of
n
×
n
{n\times n}
symmetric matrix T,
we have
P
(
∂
Z
)
det
(
Z
)
s
=
det
(
Z
)
s
Q
(
Z
-
1
)
{P({\partial}_{Z})\det(Z)^{s}=\det(Z)^{s}Q(Z^{-1})}
for some polynomial
Q
(
T
)
{Q(T)}
.
We show that the correspondence of P and Q are bijective for most s, and
give a formula of P for any Q.
In particular, when Q is a monomial,
we show that such P corresponds exactly to
the descending basis developed in a joint work with D, Zagier,
for which an explicit generating series is known.
By using the above results and the generating series,
we give an exact formula for differential operators
𝔻
{{\mathbb{D}}}
such that for any Siegel modular forms F of weight k,
the restriction
Res
H
n
1
×
H
n
2
(
𝔻
F
)
{\mathrm{Res}_{H_{n_{1}}\times H_{n_{2}}}({\mathbb{D}}F)}
to the diagonal blocks
H
n
1
×
H
n
2
⊂
H
n
1
+
n
2
=
H
n
{H_{n_{1}}\times H_{n_{2}}\subset H_{n_{1}+n_{2}}=H_{n}}
is
a vector-valued Siegel modular forms of weight
det
k
ρ
{\det^{k}\rho}
, where
ρ is a fixed representation of
GL
n
1
(
ℂ
)
×
GL
n
2
(
ℂ
)
{\mathrm{GL}_{n_{1}}({\mathbb{C}})\times\mathrm{GL}_{n_{2}}({\mathbb{C}})}
.
These results are applied to give an exact Garrett–Böcherer-type pullback formula
for any ρ that describes the restriction of
𝔻
E
k
n
{{\mathbb{D}}E_{k}^{n}}
to
H
n
1
×
H
n
2
{H_{n_{1}}\times H_{n_{2}}}
for holomorphic Siegel Eisenstein series
E
k
n
{E_{k}^{n}}
of weight k of degree n.
Funder
Japan Society for the Promotion of Science
Subject
Applied Mathematics,General Mathematics
Reference36 articles.
1. H. Atobe, M. Chida, T. Ibukiyama, H. Katsurada and T. Yamauchi,
Harder’s conjecture I,
preprint (2021), https://arxiv.org/abs/2109.10551.
2. S. Böcherer,
Über die Fourier–Jacobi-Entwicklung Siegelscher Eisensteinreihen. II,
Math. Z. 189 (1985), no. 1, 81–110.
3. S. Böcherer,
Über die Funktionalgleichung automorpher L-Funktionen zur Siegelschen Modulgruppe,
J. Reine Angew. Math. 362 (1985), 146–168.
4. S. Böcherer, T. Satoh and T. Yamazaki,
On the pullback of a differential operator and its application to vector valued Eisenstein series,
Comment. Math. Univ. St. Paul. 41 (1992), no. 1, 1–22.
5. S. Böcherer and R. Schulze-Pillot,
On the central critical value of the triple product L-function,
Number Theory (Paris 1993–1994),
London Math. Soc. Lecture Note Ser. 235,
Cambridge University, Cambridge (1996), 1–46.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献