From subcategories to the entire module categories

Author:

Hafezi Rasool1

Affiliation:

1. School of Mathematics , Institute for Research in Fundamental Sciences (IPM) , P. O. Box: 19395-5746 , Tehran , Iran

Abstract

Abstract In this paper we show that how the representation theory of subcategories (of the category of modules over an Artin algebra) can be connected to the representation theory of all modules over some algebra. The subcategories dealing with are some certain subcategories of the morphism categories (including submodule categories studied recently by Ringel and Schmidmeier) and of the Gorenstein projective modules over (relative) stable Auslander algebras. These two kinds of subcategories, as will be seen, are closely related to each other. To make such a connection, we will define a functor from each type of the subcategories to the category of modules over some Artin algebra. It is shown that to compute the almost split sequences in the subcategories it is enough to do the computation with help of the corresponding functors in the category of modules over some Artin algebra which is known and easier to work. Then as an application the most part of Auslander–Reiten quiver of the subcategories is obtained only by the Auslander–Reiten quiver of an appropriate algebra and next adding the remaining vertices and arrows in an obvious way. As a special case, when Λ is a Gorenstein Artin algebra of finite representation type, then the subcategories of Gorenstein projective modules over the 2 × 2 {2\times 2} lower triangular matrix algebra over Λ and the stable Auslander algebra of Λ can be estimated by the category of modules over the stable Cohen–Macaulay Auslander algebra of Λ.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. G-semisimple algebras;Journal of Pure and Applied Algebra;2024-12

2. The stable category of monomorphisms between (Gorenstein) projective modules with applications;Forum Mathematicum;2024-09-03

3. Determination of some almost split sequences in morphism categories;Journal of Algebra;2023-11

4. The stable Auslander-Reiten components of certain monomorphism categories;Science China Mathematics;2023-09-08

5. The Homotopy Category of Monomorphisms Between Projective Modules;Bulletin of the Malaysian Mathematical Sciences Society;2023-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3