Affiliation:
1. Department of Mathematics , University at Buffalo , 244 Mathematics Building Buffalo , NY 14260-2900 , USA
Abstract
Abstract
The purpose of this paper is to obtain asymptotics of shifted sums of Hecke eigenvalue squares on average. We show that for
X
2
3
+
ϵ
<
H
<
X
1
-
ϵ
{X^{\frac{2}{3}+\epsilon}<H<X^{1-\epsilon}}
there are constants
B
h
{B_{h}}
such that
∑
X
≤
n
≤
2
X
λ
f
(
n
)
2
λ
f
(
n
+
h
)
2
-
B
h
X
=
O
f
,
A
,
ϵ
(
X
(
log
X
)
-
A
)
\sum_{X\leq n\leq 2X}\lambda_{f}(n)^{2}\lambda_{f}(n+h)^{2}-B_{h}X=O_{f,A,%
\epsilon}(X(\log X)^{-A})
for all but
O
f
,
A
,
ϵ
(
H
(
log
X
)
-
3
A
)
{O_{f,A,\epsilon}(H(\log X)^{-3A})}
integers
h
∈
[
1
,
H
]
{h\in[1,H]}
where
{
λ
f
(
n
)
}
n
≥
1
{\{\lambda_{f}(n)\}_{n\geq 1}}
are normalized Hecke eigenvalues of a fixed holomorphic cusp form f.
Our method is based on the Hardy–Littlewood circle method. We divide the minor arcs into two parts
m
1
{m_{1}}
and
m
2
{m_{2}}
. In order to treat
m
2
{m_{2}}
, we use the Hecke relations, a bound of Miller to apply some arguments from a paper of Matomäki, Radziwiłł and Tao. In order to treat
m
1
{m_{1}}
, we apply Parseval’s identity and Gallagher’s lemma.
Subject
Applied Mathematics,General Mathematics
Reference23 articles.
1. S. Baier, T. D. Browning, G. Marasingha and L. Zhao,
Averages of shifted convolutions of
d
3
(
n
)
d_{3}(n)
,
Proc. Edinb. Math. Soc. (2) 55 (2012), no. 3, 551–576.
2. R. C. Baker, G. Harman and J. Pintz,
The exceptional set for Goldbach’s problem in short intervals,
Sieve Methods, Exponential Sums, and Their Applications in Number Theory,
London Math. Soc. Lecture Note Ser. 237,
Cambridge University, Cambridge (1997), 1–54.
3. J.-M. Deshouillers and H. Iwaniec,
An additive divisor problem,
J. Lond. Math. Soc. (2) 26 (1982), no. 1, 1–14.
4. O. M. Fomenko,
Fourier coefficients of parabolic forms, and automorphic L-functions,
Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 237 (1997), no. 14, 194–226, 231.
5. D. Goldfeld,
Automorphic Forms and L-Functions for the Group
GL
(
n
,
R
)
{\rm GL}(n,\rm R)
,
Cambridge Stud. Adv. Math. 99,
Cambridge University, Cambridge, 2015.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献