Affiliation:
1. Department of Mathematics , School of Science , Zhejiang University of Science and Technology , Hangzhou 310023 , P. R. China
2. Center of Fundamental Science , Huanghe University of Science and Technology , Zhengzhou 450063 , P. R. China
Abstract
Abstract
Let Ω be homogeneous of degree zero and have vanishing moment of order one, let A be a function on
ℝ
d
{\mathbb{R}^{d}}
such that
∇
A
∈
BMO
(
ℝ
d
)
{\nabla A\in\operatorname{BMO}(\mathbb{R}^{d})}
, and let
T
Ω
,
A
{T_{\Omega,A}}
be the singular integral operator defined by
T
Ω
,
A
f
(
x
)
=
p
.
v
.
∫
ℝ
d
Ω
(
x
-
y
)
|
x
-
y
|
d
+
1
(
A
(
x
)
-
A
(
y
)
-
∇
A
(
y
)
(
x
-
y
)
)
f
(
y
)
𝑑
y
.
T_{\Omega,A}f(x)=\mathrm{p.v.}\int_{\mathbb{R}^{d}}\frac{\Omega(x-y)}{\lvert x%
-y\rvert^{d+1}}(A(x)-A(y)-\nabla A(y)(x-y))f(y)\,dy.
In this paper, the authors prove that if
Ω
∈
L
(
log
L
)
2
(
S
d
-
1
)
{\Omega\in L(\log L)^{2}(S^{d-1})}
, then the maximal singular integral operator associated to
T
Ω
,
A
{T_{\Omega,A}}
is bounded on
L
p
(
ℝ
d
)
{L^{p}(\mathbb{R}^{d})}
for all
p
∈
(
1
,
∞
)
{p\in(1,\infty)}
.
Subject
Applied Mathematics,General Mathematics