Categorically closed countable semigroups

Author:

Banakh Taras1ORCID,Bardyla Serhii2ORCID

Affiliation:

1. Ivan Franko National University of Lviv , Lviv , Ukraine ; and Jan Kochanowski University, Kielce, Poland

2. Institut für Diskrete Mathematik und Geometrie , TU Wien , Wiedner Hauptstraße 8-10/104, 1040 Vienna , Austria

Abstract

AbstractIn this paper, we establish a connection between categorical closedness and nontopologizability of semigroups. In particular, for the class𝖳𝟣𝖲{\mathsf{T_{\!1}S}}ofT1{T_{1}}topological semigroups we prove that a countable semigroupXwith finite-to-one shifts is injectively𝖳𝟣𝖲{\mathsf{T_{\!1}S}}-closed if and only ifXis𝖳𝟣𝖲{\mathsf{T_{\!1}S}}-discrete in the sense that everyT1{T_{1}}semigroup topology onXis discrete. Moreover, a countable cancellative semigroupXis absolutely𝖳𝟣𝖲{\mathsf{T_{\!1}S}}-closed if and only if every homomorphic image ofXis𝖳𝟣𝖲{\mathsf{T_{\!1}S}}-discrete. Also, we introduce and investigate a new notion of a polybounded semigroup. It is proved that a countable semigroupXwith finite-to-one shifts is polybounded if and only ifXis𝖳𝟣𝖲{\mathsf{T_{\!1}S}}-closed if and only ifXis𝖳𝗓𝖲{\mathsf{T_{\!z}S}}-closed, where𝖳𝗓𝖲{\mathsf{T_{\!z}S}}is the class of Tychonoff zero-dimensional topological semigroups. We show that polybounded cancellative semigroups are groups, and polyboundedT1{T_{1}}paratopological groups are topological groups.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference67 articles.

1. A. V. Arhangel’skii and M. M. Choban, Semitopological groups and the theorems of Montgomery and Ellis, C. R. Acad. Bulgare Sci. 62 (2009), no. 8, 917–922.

2. A. V. Arhangel’skii and M. M. Choban, Completeness type properties of semitopological groups, and the theorems of Montgomery and Ellis, Topology Proc. 37 (2011), 33–60.

3. U. Bader and E. Leibtag, Homomorhic images of algebraic groups, preprint (2022), https://arxiv.org/abs/2212.03055.

4. T. Banakh, Categorically closed topological groups, Axioms 6 (2017), no. 3, Article ID 23.

5. T. Banakh, A quantitative generalization of Prodanov–Stoyanov theorem on minimal Abelian topological groups, Topology Appl. 271 (2020), Article ID 106983.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topological embeddings into transformation monoids;Forum Mathematicum;2024-01-06

2. Pseudocompact and precompact topological subsemigroups of topological groups;Proceedings of the International Geometry Center;2023-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3