Super-resolution reconstruction method of the optical synthetic aperture image using generative adversarial network

Author:

Chen Jing1,Tian Aileen1,Chen Ding2,Guo Meng1,He Dan1,Liu Yuwen3

Affiliation:

1. School of Opto-electronical Engineering, Xi’an Technological University , Xi’an , 710021 , China

2. School of Defense Science and Technology, Xi’an Technological University , Xi’an , 710021 , China

3. NORINCO GROUP Co., Ltd, Northwest Institute of Mechanical & Electrical Engineering , Xianyang , 712099 , China

Abstract

Abstract In order to solve the contradiction between large aperture elements and high-resolution images, in this study, we propose an improved image-resolution method based on generative adversarial network (GAN). First, we analyze the imaging principle of the optical synthetic aperture. Further, we improve a super-resolution GAN; especially, this network uses a multi-scale convolutional cascade to obtain global features of the image, and a multi-scale receptive field block and residual in residual dense block are built to obtain image details. In addition, this study uses the Mish function as the activation function of the discriminator to solve the problems of neuron extreme, gradient explosion, and poor generalization ability of the model. Through simulation, the results show that the proposed method can achieve a peak signal-to-noise ratio (PSNR) of 30 dB compared with traditional image super-resolution reconstruction methods for synthetic aperture image. The method proposed has an improvement of 2 dB in the PSNR and 0.016 in structure similarity index measure compared with the original super-resolution GAN. Therefore, this method can effectively reduce the image distortion and improve the quality of image reconstruction.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3