Liquid metal-based metamaterial with high-temperature sensitivity: Design and computational study

Author:

Deng Guangsheng12,Fang Linying12,Yang Jun12,Yin Zhiping12,Fang Yong12

Affiliation:

1. Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology , Hefei , 230009 , China

2. Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology , Hefei , 230009 , China

Abstract

Abstract This article proposes a metamaterial-based temperature sensor with high sensitivity using the thermally tunable liquid metal of mercury. The response of the metamaterial at different temperatures is theoretically investigated. In the merit of the temperature-sensitive thermal expanding of the embedded mercury resonant structure, different absorption peak frequencies can be observed at different temperatures, which enables the proposed metamaterial capability of temperature sensing. The numerical simulations show that the temperature sensitivity of the proposed sensor can reach up to 27.64 MHz/°C within the range of 0–21.8°C. The calculated electric field and surface current distributions illustrate that the high sensitivity is originated from the dual-dipole mode of the resonant structure. Meanwhile, the dependence of the structural dimensions on temperature sensitivity is discussed to optimize the sensor design. The proposed strategy paves a new way for developing temperature sensors with high sensitivity.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Circuits and Antennas Incorporating Gallium-Based Liquid Metal;Proceedings of the IEEE;2023-08

2. X-band RADAR Reflected Signal Measurement of Gallium-based Liquid Metal;Journal of the Korea Institute of Military Science and Technology;2023-06-05

3. High-Precision Temperature Sensor System With Mercury-Based Electromagnetic Resonant-Unit;IEEE Internet of Things Journal;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3