Convective flow of a magnetohydrodynamic second-grade fluid past a stretching surface with Cattaneo–Christov heat and mass flux model

Author:

Yasmin Humaira1,Shahab Sana2,Lone Showkat Ahmad3,Raizah Zehba4,Saeed Anwar5

Affiliation:

1. Department of Basic Sciences, General Administration of Preparatory Year, King Faisal University , Al Ahsa 31982 , Saudi Arabia

2. Department of Business Administration, College of Business Administration, Princess Nourah Bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia

3. Department of Basic Sciences, College of Science and Theoretical Studies, Saudi Electronic University, (Jeddah-M) , Riyadh - 11673 , Saudi Arabia

4. Department of mathematics, College of Science, King Khalid University , Abha , Saudi Arabia

5. Department of Mathematics, Abdul Wali Khan University , Mardan , 23200, Khyber Pakhtunkhwa , Pakistan

Abstract

Abstract This research delves into dynamics of magnetohydrodynamic second-grade fluid flow influenced by the presence of gyrotactic microorganisms on a stretching sheet. The study takes into account various factors such as thermal radiation, chemical reactivity, and activation energy, all of which contribute to the complex behavior of fluid flow in this system. The interaction between the magnetic field and the fluid, combined with the biological aspect introduced by gyrotactic microorganisms, adds complexity to the overall analysis. The mathematical model is presented in the form of partial differential equations (PDE)s. Using the similarity variables, the modeled PDEs are transformed into ordinary differential equations. Homotopy analysis method is used for the solution of the modeled equations. After a detailed insight into this investigation, it is established that the velocity distribution declined for growth in magnetic factor and second-grade fluid parameter. The thermal characteristics are augmented for the greater values of radiation, thermophoretic and Brownian motion factors, while these profiles are weakened for upsurge in thermal relaxation time factor and Prandtl number. The concentration characteristics declined with the enhancement in Schmidt number, mass relaxation time, chemical reaction, and Brownian motion factors, while they amplified with enhancement in activation energy and thermophoresis factors. The microorganisms’ profiles are the declining functions of bioconvection Lewis and Peclet numbers. This study included a comparative analysis, which aligns closely with existing research, demonstrating a strong concordance with established findings.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3