Numerical investigation of ozone decomposition by self-excited oscillation cavitation jet

Author:

Li Hongmin123,Liu Jingting123,Chen Songying123,Lv Wei123

Affiliation:

1. School of Mechanical Engineering, Shandong University , Jinan 250061 , China

2. Key Laboratory of High-efficiency and Clean Mechanical Manufacture, Ministry of Education , Jinan 250061 , China

3. National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University , Jinan 250061 , China

Abstract

Abstract Extreme environmental changes caused by the cavitation bubble collapse, such as high pressure, high temperature and the microjet, will cause pyrolysis reaction at the gas and liquid interface inside the bubble. Self-excited pulsed cavitation jet has an instantaneous strong pulse pressure, which leads to local hot spots surrounding the cavitation bubbles. The generation of strong oxidizing free radicals promotes easy ozone conversion into oxygen. Numerical simulations were conducted for ozone decomposition by cavitation jet. Three groups of different collision angles were applied to compare and analyze the ozone degradation reaction. Results showed that the collision angle has a certain influence on the chemical reaction intensity, the degradation of ozone, and oxygen production. At the collision angle of 180°, the chemical reaction was the most violent, with ozone degradation and oxygen production at the highest level, followed by 120° and lowest at 90°.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3