Study on fine characterization and reconstruction modeling of porous media based on spatially-resolved nuclear magnetic resonance technology

Author:

Niu Zhongkun123,Yang Zhengming23,Luo Yutian123,Zhang Yapu23,Zhao Xinli4,Chang Yilin123,Chen Xinliang123

Affiliation:

1. University of Chinese Academy of Sciences , Beijing , 100049 , P. R. China

2. Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences , Langfang , Hebei 065007 , China

3. Department of Porous Flow & Fluid Mechanics, Research Institute of Petroleum Exploration & Development, PetroChina Company Limited , Langfang , Hebei 065007 , China

4. School of Petroleum Engineering, Changzhou University , Changzhou , 213164 , China

Abstract

Abstract At present, image analysis and digital core are the main approaches for porous media reconstruction modeling, and they are both based on the real pore skeleton physical structure of porous media. However, it is difficult to reconstruct the reservoir and seepage characteristics of the real samples because of the limitations of accuracy in characterization techniques (imaging). In order to solve this problem and break through the barriers caused by the lack of accuracy, Spin-echo serial peripheral interface sequence of low field nuclear magnetic resonance is used to test the saturated water rock core with spatially resolved T2 distributions. Based on the experimental results of 1D T2 distributions, a novel method for fine reconstruction modeling of porous media is proposed, and the porous media model reconstructed by this new method better reproduces the reservoir and seepage characteristics of the original samples. Taking some of the tested porous media cores (P58 and Y75) as examples, representative elementary volume (REV)-lattice Boltzmann method (LBM) is used to simulate the flow field. Ensuring that the error of standard case is only 0.36% when multi-relaxation time REV-LBM is used, the distribution of porosity and permeability have been calculated and compared with the experimental data. The overall permeability error of the reconstructed porous media model is only 6.15 and 7.60%, respectively. Furthermore, the porosity and permeability error of almost all measuring points can be maintained within 3 and 8%. In addition, this method improves the efficiency of the existing reconstruction modeling methods, reduces the test cost, and makes the reconstruction modeling of porous media easier to operate, which has promising development prospects.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3