The predicted load balancing algorithm based on the dynamic exponential smoothing

Author:

Yan Lijie1,Liu Xudong2

Affiliation:

1. Finance Office, Yantai Vocational College, Yantai 264670, China

2. Information Engineering Department, Yantai Vocational College, Yantai 264670, China

Abstract

AbstractTo a large extent, the load balancing algorithm affects the clustering performance of the computer. This paper illustrated the common load balancing algorithms and elaborated on the advantages and drawbacks of such algorithms. In addition, this paper provides a kind of balancing algorithm generated on the basis of the load prediction. Due to the dynamic exponential smoothing model, such an algorithm helps obtain the corresponding smoothing coefficient with the server node load time series of current phrase and allows researchers to make prediction with the load value at the next moment of this node. Subsequently, the dispatcher makes the scheduling with the serve request of users according to the load predicted value. OPNET Internet simulated software is applied to the test, and we may conclude from the results that the application of such an algorithm acquires a higher load balancing efficiency and better load balancing effect.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Reference48 articles.

1. Improved dynamic load balancing strategy based on feedback;Comput Eng,2010

2. Color image chaos encryption algorithm combining CRC and nine palace map;Multimed Tools Appl,2019

3. The prediction and application of dynamic exponential smoothing model;Nat Sci J Haerbin Norm Univ,2013

4. The load balancing algorithm based on the dynamic exponential smoothing prediction;J Zhejia Univ Technol,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3