Numerical investigation of the flow characteristics involving dissipation and slip effects in a convectively nanofluid within a porous medium

Author:

Babatin Mohammed M.1,Khader Mohamed M.12,Megahed Ahmed M.2

Affiliation:

1. Department of Mathematics and Statistics, College of Science, Imam Mohammad, Ibn Saud Islamic University (IMSIU) , Riyadh 11566 , Saudi Arabia

2. Department of Mathematics, Faculty of Science , Benha University , Benha , Egypt

Abstract

Abstract The aim of the present research is to discuss the numerical aspects of heat-mass transfer in power-law nanofluids on an stretched surface. In addition, the novelty in this research lies in its thorough exploration and incorporation of parameters such as viscous dissipation, slip velocity, and convective boundary conditions into the analysis. This distinguishes the study from previous work and underscores its originality. For non-Newtonian fluids, a power-law model is employed, while the nanofluid system associate the influences of thermophoresis and the Brownian motion. The fluid’s thermal conductivity is considered to change based on temperature, while the concentration of nanoparticles at the surface is maintained at a constant level. A heated fluid situated beneath the lower surface can act as a heat convection mechanism source. A process of similarity transformation is employed to simplify the equations related to the mass, momentum, thermal energy, and nanoparticle concentration into nonlinear ordinary differential equations. These equations are then treated numerically with the help of the shifted Chebyshev polynomials of the sixth order and the spectral collocation method. The proposed technique reduces the existing problem into a system of algebraic equations formulated as a constrained optimization challenge. Subsequently, the optimization technique is applied to determine the unknown coefficients of the series solution. Graphical representations depict the impacts of nanofluid parameters. A quantitative assessment is presented in a tabular format to illustrate a comparison with previously published results for specific scenarios, revealing a notable level of agreement.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3