Vibration sensitivity minimization of an ultra-stable optical reference cavity based on orthogonal experimental design

Author:

Gao Jing12,Jiao Dongdong12,Zhang Linbo12,Xu Guanjun12,Deng Xue12,Zang Qi12,Yang Honglei3,Dong Ruifang12,Liu Tao12,Zhang Shougang12

Affiliation:

1. National Time Service Center, Chinese Academy of Sciences , 3 East Shuyuan Road , Xi’an 710600 , China

2. Key Laboratory of Time and Frequency Standards, Chinese Academy of Sciences , 3 East Shuyuan Road , Xi’an , China , 710600

3. Science and Technology on Metrology and Calibration Laboratory, Beijing Institute of Radio Metrology and Measurement , 50 Yongding Road , Beijing 100854 , China

Abstract

Abstract The ultra-stable optical reference cavity (USORC) is a key element for a variety of applications. In this work, based on the orthogonal experimental design method, we study the vibration sensitivity optimization of a classical USORC with a 100 mm length. According to a test of 4 levels and 3 factors, the L 16 (43) orthogonal table is established to design orthogonal experiments. The vibration sensitivities under different parameters are simulated and analyzed. The vibration sensitivities in three directions of the USORC are used as three single-object values, and the normalized sum of the three vibration sensitivities is selected as comprehensive object values. Through the range analysis of the object values, the influence degrees of the parameters on the three single objects and the comprehensive object are determined. The optimal parameter combination schemes are obtained by using the comprehensive balance method and the comprehensive evaluation method, respectively. Based on the corresponding fractional frequency stability of ultra-stable lasers, the final optimal parameter combination scheme A1B3C3 is determined and verified. This work is the first to use an orthogonal experimental design method to optimize vibration sensitivities, providing an approach to vibration sensitivities optimization and is also beneficial for the vibration sensitivity design of a transportable USORC.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3