Complex dynamics of a sub-quadratic Lorenz-like system

Author:

Li Zhenpeng1,Ke Guiyao23,Wang Haijun1,Pan Jun4,Hu Feiyu5,Su Qifang1

Affiliation:

1. School of Electronic and Information Engineering (School of Big Data Science), Taizhou University , Taizhou , Zhejiang, 318000 , China

2. School of Information, Zhejiang Guangsha Vocational and Technical University of Construction , Dongyang , Zhejiang 322100 , China

3. School of Information Engineering, GongQing Institute of Science and Technology , Gongqingcheng , 332020 , China

4. Department of Big Data Science, School of Science, Zhejiang University of Science and Technology , Hangzhou , 310023 , China

5. College of Sustainability and Tourism, Ritsumeikan Asia Pacific University, Jumonjibaru , Beppu , Oita, 874-8577 , Japan

Abstract

Abstract Motivated by the generic dynamical property of most quadratic Lorenz-type systems that the unstable manifolds of the origin tending to the stable manifold of nontrivial symmetrical equilibria forms a pair of heteroclinic orbits, this technical note reports a new 3D sub-quadratic Lorenz-like system: x ˙ = a ( y x ) \dot{x}=a(y-x) , y ˙ = c x 3 + d y x 3 z \dot{y}=c\sqrt[3]{x}+{\rm{d}}y-\sqrt[3]{x}z and z ˙ = b z + x 3 y \dot{z}=-bz+\sqrt[3]{x}y . Instead, the unstable manifolds of nontrivial symmetrical equilibria tending to the stable manifold of the origin creates a pair of heteroclinic orbits. This drives one to further investigate it and reveal its other hidden dynamics: Hopf bifurcation, invariant algebraic surfaces, ultimate bound sets, globally exponentially attractive sets, existence of homoclinic and heteroclinic orbits, singularly degenerate heteroclinic cycles, and so on. The main contributions of this work are summarized as follows: First, the ultimate boundedness of that system yields the globally exponentially attractive sets of it. Second, the existence of another heteroclinic orbits is also proved by utilizing two different Lyapunov functions. Finally, on the invariant algebraic surface z = 3 4 a x 4 3 z=\frac{3}{4a}\sqrt[3]{{x}^{4}} , the existence of a pair of homoclinic orbits to the origin, and two pairs of heteroclinic orbits to two pairs of nontrivial symmetrical equilibria is also proved by utilizing a Hamiltonian function. In addition, the correctness of the theoretical results is illustrated via numerical examples.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A pair of centro-symmetric heteroclinic orbits coined;Advances in Continuous and Discrete Models;2024-05-22

2. Multitudinous potential homoclinic and heteroclinic orbits seized;Electronic Research Archive;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3