Experimental set up for magnetomechanical measurements with a closed flux path sample

Author:

El Youssef Mohamad12,Van Gorp Adrien2,Clenet Stéphane1,Benabou Abdelkader1,Faverolle Pierre3,Mipo Jean-Claude3

Affiliation:

1. Univ. Lille, Centrale Lille, Arts et Metiers ParisTech, HEI, HeSam, EA 2697 – L2EP – Laboratoire d’Électrotechnique et d’Électronique de Puissance, F-59000, Lille, France

2. Arts & Metiers ParisTech; Mechanics, Surfaces and Materials Processing (MSMP), 8 Boulevard Louis XIV 59046, Lille, France

3. Valeo; Department of Electronics, 2 Rue André Charles Boulle, 94000, Créteil, France

Abstract

AbstractIn this article, an experimental procedure is presented to handle magnetic measurements under uniaxial tensile stress reaching the plastic domain. The main advantage of the proposed procedure is that it does not require an additional magnetic core to close the magnetic flux path through the studied sample. The flux flows only in the sample, and no parasitic air gaps are introduced, thus avoiding the use of the H-coil to evaluate the magnetic field, which is often very sensitive and not easy to calibrate. A specimen of nonoriented FeSi (1.3%) sheet (M330-35A) is characterized under uniaxial tensile stress. To validate the proposed procedure, a comparison with the single sheet tester procedure is carried out. The results obtained by the two procedures are in good agreement. Moreover, to illustrate the possibilities offered by the proposed procedure, we confirm some results obtained in the literature. We show that the positive plastic strain leads to a significant degradation of magnetic behavior. An applied tensile stress on a virgin (unstrained) sample leads to a degradation of the magnetic behavior. However, on a pre-strained sample, an applied tensile stress results in reducing the deterioration caused by the plastic strain until a stress value called optimum is attained. Above this threshold, the magnetic behavior re-deteriorates progressively.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3