Fractal calculation method of friction parameters: Surface morphology and load of galvanized sheet

Author:

Yang Xiaoyong12,Jin Tan1

Affiliation:

1. National Engineering Research Center for High-efficiency Grounding, Hunan University , Changsha 410082 , China

2. Department of Intelligent Manufacturing, Hunan Sany Polytechnic College , Changsha 410129 , China

Abstract

Abstract In the forming process of galvanized sheet, the friction between the die and the blank often causes the zinc coating of galvanized sheet to peel off, scratch, and crack. The aim of this study is to evaluate and calculate the fractal characteristics of the surface morphology of galvanized sheet and the effect of pressure on the interfacial friction behavior. Two steel plates, GA and GI, produced by Shanghai Baosteel Company, were used as materials to conduct tribological experiments, measure the surface profile and three-dimensional shape of the galvanized sheet, and calculate the fractal dimension and fractal roughness parameters. According to the analysis results of friction surface damage of galvanized sheet, the damage failure parameters of galvanized sheet are calculated. On this basis, according to the adhesive friction theory, the total surface friction value of galvanized sheet is obtained, and the fractal calculation model of galvanized sheet friction is established. The simulation results show that the galvanized sheet has fractal characteristics. The average values of fractal dimension and scale factor of SP781BQ alloy hot-dip galvanized sheet are 1.52 and 0.23 µm, respectively. The average fractal dimension and scale coefficient of HC420/780DPD + Z hot-dip galvanized sheet are 1.60 and 0.11 µm, respectively. The friction coefficient calculated by the proposed method is consistent with the theoretical value, and the error is less than 10%, which proves the accuracy and feasibility of the friction fractal calculation method.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3