Dynamic simulation of non-Newtonian boundary layer flow: An enhanced exponential time integrator approach with spatially and temporally variable heat sources

Author:

Arif Muhammad Shoaib12,Abodayeh Kamaleldin1,Nawaz Yasir2

Affiliation:

1. Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University , Riyadh , 11586 , Saudi Arabia

2. Department of Mathematics, Air University, PAF Complex E-9 , Islamabad , 44000 , Pakistan

Abstract

Abstract Scientific inquiry into effective numerical methods for modelling complex physical processes has led to the investigation of fluid dynamics, mainly when non-Newtonian properties and complex heat sources are involved. This paper presents an enhanced exponential time integrator approach to dynamically simulate non-Newtonian boundary layer flow with spatially and temporally varying heat sources. We propose an explicit scheme with second-order accuracy in time, demonstrated to be stable through Fourier series analysis, for solving time-dependent partial differential equations (PDEs). Utilizing this scheme, we construct and solve dimensionless PDEs representing the flow of Williamson fluid under the influence of space- and temperature-dependent heat sources. The scheme discretizes the continuity equation of incompressible fluid and Navier–Stokes, energy, and concentration equations using the central difference in space. Our analysis illuminates how factors affect velocity, temperature, and concentration profiles. Specifically, we observe a rise in temperature profile with enhanced coefficients of space and temperature terms in the heat source. Non-Newtonian behaviours and geographical/temporal variations in heat sources are critical factors influencing overall dynamics. The novelty of our work lies in developing an explicit exponential integrator approach, offering stability and second-order accuracy, for solving time-dependent PDEs in non-Newtonian boundary layer flow with variable heat sources. Our results provide valuable quantitative insights for understanding and controlling complex fluid dynamics phenomena. By addressing these challenges, our study advances numerical techniques for modelling real-world systems with implications for various engineering and scientific applications.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3