A two-stage framework for predicting the remaining useful life of bearings

Author:

Zhan Xianbiao12,Liu Zixuan3,Yan Hao1,Wu Zhenghao1,Guo Chiming1,Jia Xisheng1

Affiliation:

1. Shijiazhuang Campus, Army Engineering University of PLA , Shijiazhuang , China

2. Hebei Key Laboratory of Condition Monitoring and Assessment of Mechanical Equipment , Shijiazhuang , China

3. North China Institute of Aerospace Engineering , Langfang , China

Abstract

Abstract The traditional prediction of remaining useful life (RUL) for bearings cannot be calculated in parallel and requires manual feature extraction and artificial label construction. Therefore, this article proposes a two-stage framework for predicting the RUL of bearings. In the first stage, an unsupervised approach using a temporal convolutional network (TCN) is employed to construct a health indicator (HI). This helps reduce human interference and the reliance on expert knowledge. In the second stage, a prediction framework based on a convolutional neural network (CNN)–transformer is developed to address the limitations of traditional neural networks, specifically their inability to perform parallel calculations and their low prediction accuracy. The life prediction framework primarily maps the complete life data of bearings onto the HI vector. Based on the HI constructed through TCN, the known HI is input into the CNN–transformer network, which sequentially predicts the remaining unknown HI. Finally, the effectiveness and superiority of the proposed method are verified using two bearing datasets, providing validation of its capabilities.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3