Quantization of fractional harmonic oscillator using creation and annihilation operators

Author:

Al-Masaeed Mohamed1,Rabei Eqab. M.1,Al-Jamel Ahmed1,Baleanu Dumitru234

Affiliation:

1. Physics Department, Faculty of Science, Al Al-Bayt University , P.O. Box 130040 , Mafraq 25113 , Jordan

2. Department of Mathematics, Cankaya University , Ankara , Turkey

3. Institute of Space Sciences , Magurele-Bucharest , Romania

4. Department of Medical Research, China Medical University Hospital, China Medical University , Taichung , Taiwan

Abstract

Abstract In this article, the Hamiltonian for the conformable harmonic oscillator used in the previous study [Chung WS, Zare S, Hassanabadi H, Maghsoodi E. The effect of fractional calculus on the formation of quantum-mechanical operators. Math Method Appl Sci. 2020;43(11):6950–67.] is written in terms of fractional operators that we called α \alpha -creation and α \alpha -annihilation operators. It is found that these operators have the following influence on the energy states. For a given order α \alpha , the α \alpha -creation operator promotes the state while the α \alpha -annihilation operator demotes the state. The system is then quantized using these creation and annihilation operators and the energy eigenvalues and eigenfunctions are obtained. The eigenfunctions are expressed in terms of the conformable Hermite functions. The results for the traditional quantum harmonic oscillator are found to be recovered by setting α = 1 \alpha =1 .

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Reference31 articles.

1. Oldham KB, Spanier J. The fractional calculus. New York: Academic Press; 1974.

2. Miller KS, Ross B. An introduction to the fractional integrals and derivatives-theory and applications. New York: John willey & sons, Inc; 1993.

3. Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations. Vol. 204. Amsterdam, Boston: Elsevier; 2006.

4. Klimek M. Lagrangean and Hamiltonian fractional sequential mechanics. Czechoslovak J Phys. 2002;52(11):1247–1253.

5. Agrawal OP. Formulation of Euler–Lagrange equations for fractional variational problems. J Math Anal Appl. 2002;272(1):368–79.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solution of Conformable Laguerre and Associated Laguerre Equations Using Laplace Transform;Asian-European Journal of Mathematics;2023-08-19

2. WKB approximation with conformable operator;Modern Physics Letters A;2022-07-20

3. Extension of the variational method to conformable quantum mechanics;Mathematical Methods in the Applied Sciences;2021-11-18

4. Extension of perturbation theory to quantum systems with conformable derivative;Modern Physics Letters A;2021-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3