Hybrid pencil beam model based on photon characteristic line algorithm for lung radiotherapy in small fields

Author:

Cui Fengjie1,Gu Shaoxian1,Wang Ningyu1,Yin Chuou1,Zhang Shengyuan1,Hu Jinyou12,Cai Yunzhu1,Wu Zhangwen1,Gou Chengjun1,Wang Jun1

Affiliation:

1. Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu , 610064 , China

2. Cancer Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital , Chengdu , 610072 , China

Abstract

Abstract Hybrid pencil beam model (HPBM) based on photon characteristic line algorithm has been presented to get accurate three-dimensional (3D) dose distribution for lung radiotherapy in small fields. In the model, we introduced a scattering factor to accurately describe the transport behavior of scattered photons and secondary electrons, combined with the equivalent depth correction and the weighted density correction. The pencil beam kernels of heterogeneous lung phantoms were redefined by the scattering factor and depth dose for a reference field by photon characteristic line algorithm. Subsequently, the 3D dose distribution in lung phantoms with density of 0.1, 0.26, and 0.4 g/cm3, was calculated by the Finite-size pencil beam algorithm in five regular fields and an irregular field for 6 MV photon beam. The dose distributions obtained by the HPBM are in agreement with those obtained by the MC simulations, with a relative error of less than 3% in most of the cases. However, there are apparent discrepancies at media interfaces and lung anterior portion. Moreover, at media interfaces, relative dose errors of the two methods decrease with the increase in field size and lung density. The depth range in which relative errors is greater than 3% increases with the increase in field size at lung anterior portion. In these examples, maximum relative errors are between 5 and 29%. Nevertheless, it is shown that the HPBM based on photon characteristic line algorithm has potential research values in lung dose calculation under conditions of small fields.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3