Numerical solution for two-dimensional partial differential equations using SM’s method

Author:

Mastoi Sanaullah12,Ganie Abdul Hamid3,Saeed Abdulkafi Mohammed4,Ali Umair5,Rajput Umair Ahmed6,Mior Othman Wan Ainun1

Affiliation:

1. Institute of Mathematical Science, Faculty of Science, University of Malaya , 50603 , Kuala Lumpur , Malaysia

2. Department of Basic Science and Related Studies, Quaid e Awam University of Engineering Science and Technology (Campus) Larkana , 77150 Sindh , Pakistan

3. Basic Sciences Department, College of Science and Theoretical Studies, Saudi Electronic University , Abha Male-61421 , Saudi Arabia

4. Department of Mathematics, College of Science, Qassim University , Buraydah , Kingdom of Saudi Arabia

5. Department of Applied and Statistics, Institute of Space Technology , Islamabad 44000 , Pakistan

6. Mechanical Engineering Department, QUEST , Nawabshah , 67450 , Pakistan

Abstract

Abstract In this research paper, the authors aim to establish a novel algorithm in the finite difference method (FDM). The novel idea is proposed in the mesh generation process, the process to generate random grids. The FDM over a randomly generated grid enables fast convergence and improves the accuracy of the solution for a given problem; it also enhances the quality of precision by minimizing the error. The FDM involves uniform grids, which are commonly used in solving the partial differential equation (PDE) and the fractional partial differential equation. However, it requires a higher number of iterations to reach convergence. In addition, there is still no definite principle for the discretization of the model to generate the mesh. The newly proposed method, which is the SM method, employed randomly generated grids for mesh generation. This method is compared with the uniform grid method to check the validity and potential in minimizing the computational time and error. The comparative study is conducted for the first time by generating meshes of different cell sizes, i.e., 10 × 10 , 20 × 20 , 30 × 30 , 40 × 40 10\times 10,\hspace{.25em}20\times 20,\hspace{.25em}30\times 30,\hspace{.25em}40\times 40 using MATLAB and ANSYS programs. The two-dimensional PDEs are solved over uniform and random grids. A significant reduction in the computational time is also noticed. Thus, this method is recommended to be used in solving the PDEs.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3