Does the Mott problem extend to Geiger counters?

Author:

Schonfeld Jonathan F.1ORCID

Affiliation:

1. Center for Astrophysics , Harvard and Smithsonian 60, Garden St. , Cambridge MA 02138 , United States of America

Abstract

Abstract The Mott problem is a simpler version of the quantum measurement problem that asks: Is there a microscopic physical mechanism – based (explicitly or implicitly) only on Schroedinger’s equation – that explains why a single alpha particle emitted in a single spherically symmetric s-wave nuclear decay produces a manifestly nonspherically symmetric single track in a cloud chamber? I attempt here to generalize earlier work that formulated such a mechanism. The key ingredient there was identification of sites at which the cross section for ionization by a passing charged particle is near singular at ionization threshold. This near singularity arose from a Penning-like process involving molecular polarization in subcritical vapor clusters. Here, I argue that the same Mott problem question should be asked about Geiger counters. I then define a simple experiment to determine if ionization physics similar to the cloud chamber case takes place in the mica window of a Geiger counter and explains the collimation of wavefunctions that are spherically symmetric outside the counter into linear ion tracks inside. The experiment measures the count rate from a radioactive point source as a function of source-window separation. I have performed a proof of concept of this experiment; results are reported here and support the near-singular-ionization picture. These results are significant in their own right, and they may shed light on physical mechanisms underlying instances of the full quantum measurement problem. I illustrate this for the Stern–Gerlach experiment and a particular realization of superconducting qubits. I conclude by detailing further work required to flesh out these results more rigorously.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3