Spectroscopic characteristics and dissociation of nitrogen trifluoride under external electric fields: Theoretical study

Author:

Zheng JingYan1,Xiao Kelaiti2,Abulimiti Bumaliya1,Xiang Mei1,An Huan1

Affiliation:

1. Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials, School of Physics and Electronic Engineering, Xinjiang Normal University , Urumqi , Xinjiang 830054 , China

2. School of Computer Science and Technology, Xinjiang Normal University , Urumqi , Xinjiang 830054 , China

Abstract

Abstract The dissociation of nitrogen trifluoride (NF3) is an important topic of study because the molecule is a highly dangerous greenhouse gas that can persist in the atmosphere for 740 years. In this study, changes in the geometry, orbital energy, spectral properties, and dissociation properties of NF3 when an external electric field was applied were studied by density functional theory. Results show that when the strength of the electric field was increased, the N–3F bond length became longer until it broke, and the energy gap decreased gradually. The dissociation barrier in the potential energy curve gradually decreased with the increase in the electric field strength. When the applied electric field reached 0.05 a.u., the dissociation barrier disappeared, indicating that under the action of a strong applied electric field, NF3 is degraded because of fracture of the N–3F bond. When the application of the electric field was continued, the potential barrier disappeared and dissociation occurred when the N–4F bond was scanned. The stepwise dissociation of nitrogen trifluoride molecules occurred under an electric field intensity of 0.05 a.u. The concerted dissociation of the N–3F and N–4F bonds occurred at an electric field intensity of 0.09 a.u. When the electric field direction was in the negative direction of the z-axis, the NF3 dissociated but no concerted dissociation occurred. These results offer insight into the degradation mechanism under an applied electric field.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3